Характеристики металла титан - свойства, особенности приминения металла, положительные и отрицательные качества. строительство

 

Металл титан - распространенный в природе металл, в земной коре его больше, чем меди, свинца и цинка. При плотности 4,51 г/см3 титан имеет прочность 267...337 МПа, а его сплавы-до 1 250 МПа. Это тускло-серый металл с температурой плавления 1668 0С, коррозионно стоек при нормальной температуре даже в сильных агрессивных средах, но очень активен при нагреве выше 400 0С. В кислороде способен к самовозгоранию. Бурно реагирует с азотом. Окисляется водяным паром, углекислым газом, поглощает водород. Теплопроводность титана более чем в два раза ниже, чем у углеродистой стали. Поэтому при сварке титана, несмотря на его высокую температуру плавления, требуется меньше тепла.

    Титановые сплавы - разбираемся в подробностях

    Металл титан - распространенный в природе металл, в земной коре его больше, чем меди, свинца и цинка. При плотности 4,51 г/см3 титан имеет прочность 267...337 МПа, а его сплавы-до 1 250 МПа. Это тускло-серый металл с температурой плавления 1668 0С, коррозионно стоек при нормальной температуре даже в сильных агрессивных средах, но очень активен при нагреве выше 400 0С. В кислороде способен к самовозгоранию. Бурно реагирует с азотом. Окисляется водяным паром, углекислым газом, поглощает водород. Теплопроводность титана более чем в два раза ниже, чем у углеродистой стали. Поэтому при сварке титана, несмотря на его высокую температуру плавления, требуется меньше тепла.

    Титан может находиться в виде двух основных стабильных фаз, отличающихся строением кристаллической решетки. При нормальной температуре он существует в виде α-фазы с мелкозернистой структурой, не чувствительной к скорости охлаждения. При температуре выше 882 0С образуется β-фаза с крупным зерном и высокой чувствительностью к скорости охлаждения. Легирующие элементы и примеси могут стабилизировать α-фазу (алюминий, кислород, азот) или β-фазу (хром, марганец, ванадий). Поэтому сплавы титана условно разделяют на три группы: α, α + β и β сплавы. Первые (ВТ1, ВТ5-1) термически не упрочняются, пластичны, обладают хорошей свариваемостью. Вторые (ОТ4, ВТЗ, ВТ4, ВТ6, ВТ8) при малых добавках β-стабилизаторов также свариваются хорошо. Они термически обрабатываются. Сплавы с β-структурой, например ВТ15, ВТ22, упрочняются термообработкой. Они свариваются хуже, склонны к росту зерен и к холодным трещинам.Титан металл таблица Менделеева
    При комнатной температуре поверхность титана растворяет кислород, образуется его твердый раствор в α-титане. Возникает слой насыщенного раствора, который предохраняет титан от дальнейшего окисления. Этот слой называют алъфированным. При нагреве титан вступает в химическое соединение с кислородом, образуя ряд окислов от Ti6O до TiO2. По мере окисления изменяется окраска оксидной пленки от золотисто-желтой до темно-фиолетовой, переходящей в белую. По этим цветам в околошовной зоне можно судить о качестве защиты металла при сварке. С азотом титан, взаимодействуя активно при температуре более 500 0С, образует нитриды, повышающие прочность, но резко снижающие пластичность металла. Растворимость водорода в жидком титане больше, чем в стали, но с понижением температуры она резко падает, водород выделяется из раствора. При затвердевании металла это может вызвать пористость и замедленное разрушение сварных швов после сварки. Все титановые сплавы не склонны к образованию горячих трещин, но склонны к сильному укрупнению зерна в металле шва и околошовной зоны, что ухудшает свойства металла.
    Технология сварки титановых сплавов

    Из-за высокой химической активности титановые сплавы удается сваривать дуговой сваркой в инертных газах неплавящимся и плавящимся электродом, дуговой сваркой под флюсом, электронным лучом, электрошлаковой и контактной сваркой. Расплавленный титан жидкотекуч, шов хорошо формируется при всех способах сварки.

    Основная трудность сварки титана - это необходимость надежной защиты металла, нагреваемого выше температуры 400 0С, от воздуха.

    Дуговую сварку ведут в среде аргона и в его смесях с гелием. Сварку с местной защитой производят, подавая газ через сопло горелки, иногда с насадками, увеличивающими зону защиты. С обратной стороны стыка деталей устанавливают медные подкладные планки с канавкой, по длине которой равномерно подают аргон. При сложной конструкции деталей, когда осуществить местную защиту трудно, сварку ведут с общей защитой в камерах с контролируемой атмосферой. Это могут быть камеры-насадки для защиты части свариваемого узла, жесткие камеры из металла или мягкие из ткани со смотровыми окнами и встроенными рукавицами для рук сварщика. В камеры помещают детали, сварочную оснастку и горелку. Для крупных ответственных узлов применяют обитаемые камеры объемом до 350 м 3, в которых устанавливают сварочные автоматы и манипуляторы. Камеры вакуумируются, затем заполняются аргоном, через шлюзы в них входят сварщики в скафандрах.

    Аргонодуговой сваркой вольфрамовым электродом детали толщиной 0,5... 1,5 мм сваривают встык без зазора и без присадки, а толщиной более 1,5 мм - с присадочной проволокой. Кромки свариваемых деталей и проволока должны зачищаться так, чтобы был снят насыщенный кислородом альфированный слой. Проволока должна пройти вакуумный отжиг при температуре 900... 1000 0С в течение 4 ч. Сварку ведут на постоянном токе прямой полярности. Детали толщиной более 10... 15 мм можно сваривать за один проход погруженной дугой. После образования сварочной ванны увеличивают расход аргона до 40...50 л/мин, что приводит к обжатию дуги. Затем электрод опускают в сварочную ванну. Давление дуги оттесняет жидкий металл, дуга горит внутри образовавшегося углубления, ее проплавляющая способность увеличивается.Титан приминение
    Узкий шов с глубоким про-плавлением при сварке неплавя-щимся электродом в аргоне можно получать, применяя флюсы-пасты АН-ТА, АНТ17А на основе фтористого кальция с добавками. Они частично рафинируют и модифицируют металл шва, а также уменьшают пористость.

    Дуговую сварку титановых сплавов плавящимся электродом (проволокой диаметром 1,2...2,0 мм) выполняют на постоянном токе обратной полярности на режимах, обеспечивающих мелкокапельный перенос электродного металла. В качестве защитной среды применяют смесь из 20 % аргона и 80 % гелия или чистый гелий. Это позволяет увеличить ширину шва и уменьшить пористость.

    Титановые сплавы можно сваривать дуговой сваркой под бескислородными фтористыми флюсами сухой грануляции АНТ1, АНТЗ для толщины 2,5...8,0 мм и АНТ7 для более толстого металла. Сварку ведут электродной проволокой диаметром 2,0...5,0 мм с вылетом электрода 14...22 мм на медной или на флюсомедной подкладке, либо на флюсовой подушке. Структура металла в результате модифицирующего действия флюса получается более мелкозернистой, чем при сварке в инертных газах.

    При электрошлаковой сварке используют пластинчатые электроды из того же титанового сплава, что и свариваемая деталь, толщиной 8...12 мм и шириной, равной толщине свариваемого металла. Используют тугоплавкие фторидные флюсы АНТ2, АНТ4, АНТ6. Чтобы через флюс не проникал кислород, шлаковую ванну дополнительно защищают аргоном. Металл зоны термического влияния защищают, увеличивая ширину формирующих водоохлаждаемых ползунов и продувая в зазор между ними и деталью аргон. Сварные соединения после электрошлаковой сварки имеют крупнокристаллическую структуру, но свойства их близки к основному металлу. Перед электрошлаковой сваркой, так же как и перед дуговой, флюсы должны быть прокалены при температуре 200...300 0С.

    Электронно-лучевая сварка титановых сплавов обеспечивает наилучшую защиту металла от газов и мелкозернистую структуру шва. Требования к сборке по сравнению с другими способами жестче.

    При всех способах сварки титановых сплавов нельзя допускать перегрева металла. Нужно применять способы и приемы, позволяющие влиять на кристаллизацию металла: электромагнитное воздействие, колебания электрода или электронного луча поперек стыка, ультразвуковое воздействие на сварочную ванну, импульсный цикл дуговой сварки и т.п. Все это позволит получать более мелкую структуру шва и высокие свойства сварных соединений.

    Характеристики металла титан и его применение

    Металл титан является легким серебристо-белым металлом. Титановые сплавы обладают легкостью и прочностью, высокой коррозийной стойкостью и низким коэффициентом теплового расширения. Кроме того, титан - металл, который способен сохранять свои свойства в диапазоне температур от – 290 до +600 градусов Цельсия.  

    Оксид этого металла впервые обнаружил в 1789 У. Грегор. Во время исследования железистого песка ему удалось выделить окись неизвестного до селе металла, которой он дал название менакеновая. Один из первых образцов металлического титана был получен в 1825 Й. Я. Берцелиусом.  

    Особенности

    В периодической таблице Менделеева титан - элемент, находящийся в 4-ой группе 4-ого периода под номером 22. В наиболее устойчивых соединениях данный элемент четырехвалентен. Своим внешним видом он немного напоминает сталь и относится к переходным элементам. Температура плавления титана 1668±4°С, а кипит он при 3300 градусах Цельсия. Что касается скрытой теплоты плавления и испарения этого металла, то она почти в 2 раза больше, нежели у железа.  

    Титан - металл серебристого оттенка
    Сегодня существуют две аллотропические модификации титана. Первая – низкотемпературная альфа-модификация. Вторая – высокотемпературная бетта-маодификация. По плотности, а также удельной теплоемкости этот металл занимает место между алюминием и железом.  

    Характеристика титана имеет ряд положительных особенностей. Механическая прочность его вдвое больше чистого железа и в шесть раз выше алюминия. Однако, титан способен поглощать кислород, водород и азот. Они могут резко снижать его пластические свойства. Если титан смешивается с углеродом, то образуются тугоплавкие карбиды, которые имеют высокую твердость.  

    Титану свойственна низкая теплопроводность, которая в 4 раза меньше, чем у алюминия, и в 13 раз, чем у железа. Также титан обладает довольно высоким удельным электросопротивлением.  Титан металл таблица Менделеева

    Титан является парамагнитным металлом, а как известно, парамагнитные вещества обладают магнитной восприимчивостью, которая падает при нагревании. Однако, титан – исключение, так как его восприимчивость только увеличивается с температурой.  

        Достоинства:
        Малая плотность, которая способствует уменьшению массы материала;
        Высокая механическая прочность;
        Высокая коррозийная стойкость;
        Высокая удельная прочность.

        Недостатки:
        Высокая стоимость производства;
        Активное взаимодействие со всеми газами, из-за чего плавят его только в вакууме либо среде инертных газов;
        Плохие антифрикционные свойства;
        Сложности вовлечения в производство титановых отходов;
        Склонность к солевой коррозии, водородной хрупкости;
        Довольно плохая обрабатываемость резанием;
        Большая химическая активность.

    Использование

    Применение титана наиболее востребовано в производстве ракетной и авиационной техники, морском судостроении.

    Кольца
    Его используют в качестве легирующей примеси к качественным сталям. Технический титан расходуется на изготовление емкостей и химических реакторов, трубопроводов и арматуры, насосов и клапанов, плюс ко всему изделий, функционирующих в агрессивных средах. Компактный титан применяется для изготовления сеток и других деталей электровакуумных приборов, которые работают в высоких температурах. 

    Механическая прочность, коррозийная стойкость, удельная прочность, жаропрочность и другие свойства титана позволяют широко применять его в технике. Высокая стоимость этого металла и сплавов компенсируется большой работоспособностью. В некоторых ситуациях титановые сплавы являются единственными использующимися для изготовления того или иного оборудования либо конструкций, способных работать в конкретных условиях. 

    Добыча

    Изначально добыча титана производилась для нужд производства красителей. Однако, использование этого металла в качестве конструкционного материала привело к расширению добычи титановой руды, а также поиску и освоению новых месторождений 

    Брусок чистого (99,995 %) титана
    В прошлом титан был побочным продуктом, а во многих случаях препятствовал, к примеру, добыче железной руды. Сегодня же рудники эксплуатируются только для получения этого металла, как главного продукта. 

    Чтобы добывать титановую руду, не нужно обладать каким-либо специальным горным оборудованием и проводить сложные операции. Если титановые минералы находят в песчаных месторождениях, то собираются они с помощью землесосных снарядов, проходя через которые они попадают на баржи, а те в свою очередь доставляют их на обогатительную установку. Но, если же минералы титана находят в горных породах, то здесь уже не используют даже горное оборудование. 

    Руда измельчается для обеспечения эффективного разделения минеральных компонентов. После, чтобы отделить ильменит от посторонних материалов применяется влажная магнитная сепарация малой интенсивности. Затем остаточный ильменит обогащается с помощью гидравлических классификаторов и столов. Потом обогащение производится методом сухой магнитной сепарации, обладающей высокой интенсивностью.  

    Свойство металла титан и его место в продуктах

    Титан – химический элемент, довольно широко распространённый в природе. Это металл, серебристо-серый и твёрдый; он входит в состав многих минералов, и добывать его можно почти везде – Россия занимает второе место в мире по добыче титана.

    Много титана в титанистом железняке – ильмените, относящемся к сложным оксидам, и золотисто-красном рутиле, являющемся полиморфной (многообразной и способной существовать в разных кристаллических структурах) модификацией двуокиси титана – химикам известно три таких природных соединения.

    Титан часто встречается в горных породах, но в почвах, особенно песчаных, его ещё больше. Среди титаносодержащих горных пород можно назвать перовскит – он считается довольно распространённым; титанит – силикат титана и кальция, которому приписываются лечебные и даже магические свойства; анатаз – также полиморфное соединение – простой оксид; и брукит – красивый кристалл, часто встречающийся в Альпах, а у нас, в России – на Урале, Алтае и в Сибири.

    Заслуга открытия титана принадлежит сразу двоим учёным – немцу и англичанину. Английский учёный Уильям Мак-Грегор не был химиком, но минералами очень интересовался, и однажды, в конце XVIII века, выделил из чёрного песка Корнуэлла неизвестный металл, и вскоре написал о нём статью.

    Эту статью читал и известный немецкий учёный, химик М.Г. Клапрот, и он через 4 года после Мак-Грегора обнаружил оксид титана (так он назвал этот металл, а англичане называли его менаккином – по названию места, где он был найден) в красном песке, распространённом в Венгрии. Когда учёный сравнил соединения, найденные в чёрном и красном песке, они оказались оксидами титана – так что этот металл был открыт обоими учёными независимо.

    Кстати, название металла не имеет никакого отношения к древнегреческим Богам Титанам (хотя есть и такая версия), а назвали его в честь Титании – царицы фей, о которой писал Шекспир. Это название связывается с лёгкостью титана – его необычно низкой плотностью.

    После этих открытий многие учёные не раз пытались выделить чистый титан из его соединений, но в XIX веке это удавалось плохо - даже великий Менделеев считал этот металл редким, и потому интересным только для «чистой» науки, а не для применения в практических целях. Но учёные XX века поняли, что титана в природе много – около 70 минералов содержат его в своём составе, и сегодня известно множество таких месторождений. Если говорить о металлах, широко используемых человеком в технике, то можно найти только три, которых в природе больше, чем титана – это магний, железо и алюминий. Химики ещё говорят, что, если количественно объединить все запасы меди, серебра, золота, платины, свинца, цинка, хрома и ещё некоторых металлов, которыми богата Земля, то титана получится больше, чем их всех.

    Выделять из соединений чистый титан химики научились только в 1940 году – это сделали американские учёные.Титан приминение
    Многие свойства титана уже изучены, и он применяется в разных сферах науки и промышленности, но мы здесь не будем подробно рассматривать эту сторону его применения – нам интересно биологическое значение титана.

    Использование титана в медицине и пищевой промышленности тоже нас интересует – в этих случаях титан поступает непосредственно в организм человека, или контактирует с ним. Одно из свойств этого металла очень радует: учёные, в том числе и медики, считают титан безопасным для человека, хотя при его избыточном поступлении в организм могут возникать хронические лёгочные заболевания.
    Титан в продуктах

    Титан есть в морской воде, тканях растений и животных, а значит, и в продуктах растительного и животного происхождения. Растения получают титан из почвы, на которой растут, а животные получают его, поедая эти растения, однако вначале – уже в XIX веке - химики открыли титан в организме животных, а уже потом в растениях. Эти открытия снова были сделаны англичанином и немцем – Г. Ризом и А. Адергольдом.

    В организме человека титана около 20 мг, и поступает он обычно с продуктами питания и водой. Титан есть в яйцах и молоке, в мясе животных и растениях – их листьях, стеблях, плодах и семенах, но вообще в продуктах питания его немного. Растения, особенно водоросли, содержат больше титана, чем ткани животных; много его в кладофоре – кустистой ярко-зелёной водоросли, часто встречающейся в пресных водоёмах и морях.
    Значение титана для организма человека

    Зачем титан нужен организму человека? Учёные говорят, что его биологическая роль не выяснена, но он участвует в процессе образования эритроцитов в костном мозге, в синтезе гемоглобина и в процессе формирования иммунитета.

    Титан есть в головном мозге человека, в слуховом и зрительном центрах; в женском молоке он есть всегда, причём в определённых количествах. Концентрации титана в организме активизируют обменные процессы, и улучшают общий состав крови, снижая в ней содержание холестерина и мочевины.

    В сутки человек получает около 0,85 мг титана, с водой и продуктами питания, а также с воздухом, но в желудочно-кишечном тракте он всасывается слабо – от 1 до 3%.

    Для человека титан нетоксичен или малотоксичен, и о летальной дозе у медиков тоже нет данных, но при регулярном вдыхании двуокиси титана он накапливается в лёгких, и тогда развиваются хронические заболевания, сопровождающиеся одышкой и кашлем с мокротой – трахеит, альвеолит и др. Накопление титана вместе с другими, более токсичными элементами, вызывает воспаления и даже гранулематоз – тяжёлое заболевание сосудов, опасное для жизни.

    Избыток и недостаток титана

    Чем может объясняться избыточное поступление титана в организм? Поскольку, как уже сказано, титан применяется во многих областях науки и промышленности, избыток титана и даже отравление им часто грозит рабочим разных производств: машиностроительных, металлургических, лакокрасочных и т.д. Наиболее токсичен хлорид титана: достаточно отработать на таком производстве около 3-х лет, не особенно соблюдая технику безопасности, и хронические заболевания не замедлят проявиться.

    Лечат такие заболевания обычно антибиотиками, пеногасителями, кортикостероидами, витаминами; больные должны находиться в покое и получать обильное питьё.

    Дефицит титана – как у человека, так и у животных, не выявлен и не описан, и в этом случае можно предположить, что его действительно не бывает.

    В медицине титан необыкновенно популярен: из него делают превосходные инструменты, и при этом доступные и недорогие – титан стоит от 15 до 25 долларов за килограмм. Любят титан ортопеды, стоматологи и даже нейрохирурги – и неудивительно.

    Оказывается, у титана есть ценное для медиков качество – биологическая инертность: это означает, что конструкции из него прекрасно себя ведут в организме человека, и абсолютно безопасны для мышечных и костных тканей, которыми они обрастают со временем. Структура тканей при этом не меняется: титан не подвержен коррозии, а его механические свойства очень высоки. Достаточно сказать, что в морской воде, которая по составу очень близка к лимфе человека, титан может разрушаться со скоростью 0,02 мм за 1000 лет, а в растворах щелочей и кислот он по устойчивости похож на платину.

    Среди всех используемых в медицине сплавов титановые отличаются чистотой, и примесей в них почти нет, чего нельзя сказать о кобальтовых сплавах или нержавеющей стали.

    Внутренние и наружные протезы, изготовленные из титановых сплавов, не разрушаются и не деформируются, хотя всё время выдерживают рабочие нагрузки: механическая прочность титана в 2-4 раза выше, чем у чистого железа, и в 6-12 раз выше, чем у алюминия.

    Пластичность титана позволяет делать с ним всё, что угодно – резать, сверлить, шлифовать, ковать при низких температурах, прокатывать – из него получается даже тонкая фольга.

    Температура его плавления, однако, довольно высока – около 1670°C.

    Электропроводность у титана очень низкая, и он относится к немагнитным металлам, поэтому пациентам с титановыми конструкциями в организме можно назначать физиотерапевтические процедуры – это безопасно.

    В пищевой промышленности используется диоксид титана – в качестве красителя, обозначающегося как Е171. Им окрашивают конфеты и жвачку, кондитерские изделия и порошковые продукты, лапшу, крабовые палочки, изделия из фарша; им же осветляют глазури и муку.

    В фармакологии диоксидом титана окрашивают лекарства, а в косметологии – кремы, гели, шампуни и другие средства.

    металл титан свойство металла титан характеристики металла титан

    Похожие товары

    Изображение
    Как быстро и просто построить теплицу? Теплица в форме пирамиды - советы по строительству. Особенности теплицы - пирамиды.
    Если вы не хотите ломать себе голову над вопросами, малая часть которых перечислена на несколько строк выше, есть верное средство уберечь себя от нервотрепки. Для этого стоит всего лишь обратиться к специалисту. Следует отдать должное рыночным отношениям, которые и в этой сфере человеческой деятельности быстро реагируют на спрос. Специализированные предприятия ныне способны спроектировать и...
    Отзывы :0шт.
    Функциональные особенности проектов домов из камня и комбинированных домов.
     
    Проект дома П-31 – это каменный дом, поражающий воображение своей монументальной и живописной архитектурой. На краю дома имеется терраса, на которой равномерно распределяется солнечный свет. Этот дом прекрасно будет смотреться как на открытой равнинной местности, так и в глубине лесного массива.
    Готовый проект дома из камня

    Проекты домов из камня
    Проект дома выполненный из камня с...
    Отзывы :0шт.
    Строительство домов из бруса своими руками - как это происходит.
    Вы наверно задавали себе такой вопрос: как построить дом из бруса своими руками? Строительство домов из бруса своими руками это целая наука. Хотя мы делаем все, чтобы нашим клиентам не приходилось ломать голову над проектом и тонкостями его реализации, любому хозяину приятно побольше узнать о своей собственности. Особенно когда это собственный дом на природе!
    Отзывы :0шт.
    Деревянные дома от компании ООО «Компания Кедр». Особенности правильного проектирования деревянных домов
    ООО «Компания Кедр» была создана в 2008 году. Основное направление деятельности – продажа и строительство готовых серийных домов для отдыха в сегменте «комфортные дачи и коттеджи» из деревянных конструкций.
    Особенности домов из дерева

    Огромную популярность сегодня завоевали дома из дерева. В жилище данного типа не бывает жарко и влажно, дерево сохраняет тепло зимой, летом оно дарит...
    Отзывы :0шт.
    Как наносить декоративную штукатурку правильно - фото и видео обзор.
    Декоративные штукатурки - это толстослойное покрытие, имеющее определенную структуру. Его структура определяется типом, размером и формой наполнителя, применяемым инструментом, а также технологическими приемами нанесения. Поставляются как готовыми к употреблению, так и в виде сухой смеси.
    Отзывы :0шт.