Удельные характеристики механических свойств древесины. Древесина — материал естественного биологического происхож­дения древесина

Мы уже не раз говорили о том, что древесина — материал естественного биологического происхож­дения (в отличие от металлов или искусственных синтетических полимеров), поэтому методы клас­сического материаловедения (металловедения) применимы к нему с достаточно большой мерой приближения. О причинах этого мы тоже писали неоднократно. Поэтому и существует особая нау­ка — древесиноведение, имеющая свои традиции и свои методы. Но в основном она основана на тради­ционных подходах к исследованию свойств матери­алов.

    Физико механические свойства древесины

    К физико-механическим свойствам древесины относятся прочность, твердость, пластичность, упругость, теплопроводность, устойчивость к влажности, усушке, разбуханию и др.

    Прочность древесины - главный ее показатель. Под этим термином понимается способность древесины противостоять воздействию внешних факторов, избегая расщепления.Особенности древесины как материала биологического происхождения

    Твердость древесины - ее сопротивляемость при обработке раз личными столярными или плотничными инструментами.

    Пластичность - это технологическая характеристика древесины. Она подразумевает свойство древесины менять свою форму.

    Упругость - свойство древесины занимать "исходный" вид после окончания приложения к ней нагрузок.

    Плотность древесины - еще один ее показатель. В зависимости от нее (плотности) древесину подразделяют на древесину высокой плотности (свыше 750 кг (м)), средней плотности (свыше 550 кг (м)) и малой плотности (ниже 550 кг (м)). К числу плотных пород древесины относят березу дуб и бук. Малоплотные - пихта и сосна.

    Влажность - количество содержащейся в древесине влаги. Наибольшей влажностью обладает свежесрубленная древесина хвойных пород деревьев (до 90 %), меньше - лиственных.

    Теплопроводность - немаловажный фактор древесины, используемый в строительстве жилых домов и подсобных помещений. Причем, более влажная древесина одного и того же дерева обладает различной теплопроводностью, (влажная имеет меньший коэффициент теплопроводности, нежели сухая).

    Звукопроводность это свойство древесины проводить звуки в одном и другом направлении. Например, древесина проводит звук больше вдоль волокон, а поперек меньше.

    Усушка разница между первоначальным ее объемом и объемом после процесса высыхания. Усушка и влажность напрямую зависят друг от друга, так как являются двумя взаимозаменяемыми свойствами древесины. Это свойство древесины играет немаловажную роль при заготовлении строительного древесного материала (разметке и обработке деревянных деталей и конструкций).

    Разбухание - обратная единица усушки. Это способность древесины впитывать влагу из окружающей среды. В результате изменяется не только размер готового деревянного изделия или элемента строительства, но порой и его форма, так как разбухание может приводить к короблению древесины, ее перегибам и изворотам.

    Прочность древесины при сжатии

    Сжатие вдоль волокон. Предел прочности при сжатии вдоль волокон наименее изменчив по сравнению с показателями других свойств древесины. В конструкциях и изделиях древе­сина очень часто работает на сжатие вдоль волокон, что объяс­няется ее высокой прочностью при данном виде воздействия и удобством их приложения.
    Можно выделить типичные виды разрушения при сжатии вдоль волокон. У пород с легко деформируемой древесиной, а также у всех пород при высокой влажности древесины наб­людается смятие торцов образца. У пород с повышенной жес­ткостью при разрушении появляется косая складка, обычно расположенная под углом 60-70" на тангенциальной повер­хности образца. Довольно часто можно обнаружить у разру­шенного образца две встречные косые складки, образующие клиновидный участок, под которым видна трещина от про­дольного раскола. Иногда наблюдается расслоение образца и другие виды разрушения. Все это свидетельствует о существен­ном влиянии на показатели прочности при сжатии вдоль воло­кон особенностей строения и анизотропии механических свойств древесины.
    Данные о пределах прочности наиболее распространенных в России пород приведены в таблице 1.
      Особенности древесины как материала биологического происхождения
    Сжатие поперек волокон. Возможны три типичных слу­чая разрушения для этого типа нагружения. Первый характе­рен для древесины хвойных пород (радиальное направление). Сначала происходит сжатие слабой ранней древесины годич­ных слоев, затем, после потери устойчивости анатомических элементов, происходит процесс их смятия, не требующий больших дополнительных усилий. Последняя фаза деформи­рования не связана с разрушением, т. к. здесь начинает оказы­вать сопротивление более прочная и жесткая поздняя древеси­на и, несмотря на большие нагрузки, происходит лишь уплот­нение древесины. Второй тип характерен для лиственных по­род как в радиальном, так и в тангенциальном направлениях. В данном случае вторая фаза выражена менее явно. Совсем иная картина наблюдается для древесины хвойных пород при сжатии в тангенциальном направлении. При этом усилия вос­принимают одновременно ранние и поздние зоны годичных слоев. Это более прочные зоны и это обстоятельство приводит к разрушению образца. Он выпучивается в сторону выпуклос­ти годичных слоев. Примерно такой же характер разрушения наблюдается для сухой древесины дуба в радиальном направлении. Результаты исследований показывают, что предел прочности при сжатии поперек волокон для всех пород примерно в 10 раз меньше предела прочности при сжатии вдоль волокон.
    Не менее интересны данные испытаний на местное смятие попе­рек волокон (определение контактной прочности древесины). Здесь воздействие происходит не на всю поверхность детали (образца), а лишь на ее часть. Предел прочности на местное смятие из-за дополни­тельного сопротивления волокон изгибу оказывается несколько (на 20-25%) выше, чем при простом сжатии.
    Сжатие поперек волокон происходит в случае изготовления прес­сованной древесины, местное смятие— в случае местного воздей­ствия на паркет и т. д.

    Прочность древесины на растяжение

    Растяжение вдоль волокон. Предел прочности древесины на рас­тяжение вдоль волокон сравнительно слабо зависит от влажности дре­весины, но резко падает при малейшем отклонении волокон от нап­равления продольной оси образца. В среднем для всех пород предел прочности на растяжение вдоль волокон составляет около 130 МПа, Несмотря на столь высокую прочность, древесина в конструкциях и изделиях крайне редко работает на растяжение вдоль волокон из-за трудности предотвращения разрушения деталей в местах закрепления (под действием сжимающих и скалывающих нагрузок).Древесина материал
    Растяжение поперек волокон. Из данных, приведенных в раз­личных источниках, следует, что прочность древесины при растяже­нии поперек волокон в радиальном направлении больше, чем в танген­циальном, у хвойных пород— на 10-50%, у лиственных— на20-70%. Наибольшую прочность имеют твердые рассеяннососудистые листвен­ные породы, затем идут кольцесосудистые лиственные и далее мягкие рассеяннососудистые лиственные. Хвойные породы по сравнению с лиственными имеют значительно меньшую прочность при растяже­нии как в радиальном, так и в тангенциальном направлении.
    В среднем прочность при растяжении вдоль волокон примерно в 20 раз превышает прочность при растяжении поперек волокон.
    Характеристики прочности для рассматриваемого вида усилий не­обходимы для разработки режимов резания и сушки древесины. Именно они ограничивают предельные значения сушильных напря­жений, достижение которых вызывают растрескивание материала. При расчете безопасных режимов сушки древесины учитывают зави­симость пределов прочности от влажности и температуры, а также длительность действия нагрузки. Л при конструировании изделий они практически не применяются, т. к. конструкторы стараются избегать нагружеиия. в котором действуют заметные растягивающие нагрузки поперек волокон.
     

    Механические свойства древесины

    Древесина вследствие волокнистого строения отличается высокой прочностью при растяжении и сжатии вдоль волокон и значительно меньшей — поперек волокон. У хвойных пород предел прочности при сжатии вдоль волокон в 10-12 раз больше, чем поперек, а у лиственных — в 5-8 раз. Механическая прочность древесины в значительной степени зависит от объемной массы; с увеличением объемной массы древесины повышается прочность.

    Прочность зависит от влажности — с повышением влажности она уменьшается. На прочность древесины оказывает влияние лишь изменение количества гигроскопической влаги. При повышении влажности выше точки насыщения волокон прочность древесины практически не уменьшается.

    Древесина материал
    Прочность древесины характеризуется пределом прочности, т.е. напряжением, равным отношению наибольшей нагрузки, предшествовавшей разрушению образца, к первоначальной площади его сечения. Деформация древесины может быть различной не только в зависимости от величины действующих сил, но и от продолжительности их воздействия. Так, при кратковременном воздействии определенной силы деформация может быть упругой, а при длительном воздействии той же силы — остаточной и тем большей, чем длительнее воздействие.

    Во многих деревянных конструкциях древесина работает на сжатие, смятие, скалывание, изгиб и реже на растяжение как вдоль, так и поперек волокон. В связи с этим древесину испытывают, главным образом, на сжатие вдоль и поперек волокон, на скалывание и изгиб.

    Прочность древесины при сжатии вдоль волокон. Это одно из важных механических свойств древесины. Сопротивление сжатию вдоль волокон составляет значительную величину и колеблется у различных пород от 40 до 60 МПа при стандартной влажности 12% и от 20 до 40 МПа при влажности выше 30%. Сжатие древесины вдоль волокон имеет важное значение при использовании ее для мебели, свай, стоек, стропильных ферм и т. д.

    Предел прочности о 12, Па, вычисляют по формуле Оц * Pab. Здесь Р — максимальное разрушающее усилие, Н; а и b — ширина и толщина образца, м.

    Прочность древесины при сжатии поперек волокон. При сжатии древесины поперек волокон в зависимости от породы и направления сжатия (радиального, тангентального) деформация может быть равномерной — однофазной и неравномерной — трехфазной. В последнем случае при испытании вначале наблюдается повышение напряжений и деформации (фаза), затем прирост напряжений почти прекращается и наблюдается только увеличение деформации образца (фаза), далее напряжения начинают возрастать (фаза). Вследствие наличия пофазной деформации испытания на сжатие поперек волокон ведут с регистрацией как усилий, так и величин деформации. За условный предел прочности при сжатии поперек волокон принимают напряжение, соответствующее пределу пропорциональности, т.е. максимальное значение напряжения на прямолинейном участке диаграммы. Условный предел в 6-10 раз меньше чем при сжатии вдоль волокон.

    Прочность при растяжении вдоль волокон. При растяжении древесины вдоль волокон показатель прочности имеет наибольшие значения. Деформация древесины при растяжении (удлинение образца) незначительна. Разрушение происходит в виде разрыва тканей. При высокой прочности разрыв длинноволокнистый, а при низкой — раковистый, почти гладкий. Прочность древесины на растяжение вдоль волокон зависит от породы древесины и находится в пределах 70-170 МПа при влажности 12%. Увеличение влажности приводит к некоторому снижению прочности. Предел прочности определяют по формуле а = Pmax/bh. Здесь b и h — ширина и толщина рабочей части образца, см; Ртах — максимальная нагрузка, предшествующая разрушению образца; Н.

    Прочность при растяжении поперек волокон. Древесина сравнительно слабо сопротивляется растяжению поперек волокон. Величина предела прочности при растяжении вдоль волоконца если есть трещины, это значение вообще может упасть до нуля. Поэтому на практике древесину не применяют для работы на растяжение поперек волокон. Определение величины прочности древесины на растяжение поперек волокон необходимо для разработки безопасных в отношении растрескивания режимов сушки и для обоснования режимов резания.

    Прочность древесины при статическом изгибе. При изгибе древесины возникают напряжения растяжения на выпуклой стороне и напряжения сжатия на вогнутой. Кроме того, возникают касательные напряжения при скалывании вдоль волокон. Сопротивление древесины статическому изгибу имеет большое значение во многих конструкциях, изготовляемых из нее, — мебели, лыжах, балках, стропилах, мостах. Предел прочности древесины при статическом изгибе в зависимости от породы колеблется в пределах 70-150 МПа (при влажности 12%). Увеличение влажности приводит к снижению предела прочности до 40-90 МПа (при влажности 30% и выше). Предел прочности при нагружении образца в центре о12 = ЗР ax/2bh2. Здесь  — расстояние между центрами опор, см; b — ширина образца, см; h — высота образца (в направлении действия силы), см .

    Прочность древесины при сдвиге. При сдвиге на древесину действуют две равные и противоположные по направлению силы. Многие конструкции узлов мебели, мостов, ферм работают на сдвиг. При сдвиге действуют касательные силы, расположенные в плоскости, параллельной действию внешних сил.

    Испытание на сдвиг возможно в трех направлениях: скалывание вдоль волокон, скалывание поперек волокон, перерезание древесины поперек волокон. Каждый вид испытания молено проводить в радиальном и тангентальном направлениях. Всего возможны шесть случаев испытания на сдвиг. Наиболее распространенное испытание — на скалывание вдоль волокон. Предел прочности при скалывании вдоль волокон для хвойных пород древесины почти не зависит от радиального или танген-тального направления и составляет 6,5-10 МПа. У лиственных пород при радиальном скалывании предел прочности в зависимости от породы находится в пределах 6-16 МПа, при танген-тальном на 10-30% выше, чем при радиальном. Прочность древесины при других случаях сдвига мало изучена. Предел прочности при сдвиге определяют по формуле х = Р/Ы. Здесь b — ширина площади скалывания, см;  — длина площади скалывания, см.

    Ударная вязкость древесины. При статическом изгибе на древесину действует определенная нагрузка, величина которой либо остается постоянной либо возрастает постепенно. Однако в отдельных случаях изгибающая нагрузка может действовать и более резко: при прыжке на лыжах с трамплина, большой нагрузке на мост или стул, ударе судна о причал. Здесь важно знать о поведении и прочности древесины. Нагрузка при ударном изгибе производится на специальной испытательной машине — маятниковом копре.

    Определяют ударную вязкость древесины А, Дж/см2, по формуле А12 = Q/nh. Здесь Q — работа, затраченная над илом (по шкале копра), Дж; b — ширина образца, см; h — высота образца, см.

    Твердость древесины. С твердостью древесины приходится сталкиваться при изучении ее стойкости на истирание (деревянные полы, паркет, деревянные настилы), при обработке режущим инструментом, скреплении гвоздями (тара строительные блоки). Твердость может быть различной на торцовой, радиальной и тангнентальной поверхностях. Наиболее твердая — торцовая поверхность (22-97 МПа в зависимости от породы при влажности 12%). Твердость радиальной и тангентальной поверхностей почти одинаковы между собой, а по отношению к торцовой ниже на 30-40%. При увеличении влажности твердость уменьшается.

    Модули упругости. Способность материала деформироваться, т.е. его жесткость, характеризуется модулем упругости, который представляет собой отношение напряжения в материале к упругой деформации. При растяжении и сжатии модуль упругости Е, МПа, определяют по формуле Е = ст/е (модуль  рода). Здесь о — нормальное напряжение, МПа, е — относительная деформация (величина безразмерная).

    При действии сдвигающих сил модуль сдвига определяют по формуле G = т/У (модуль  рода). Здесь т — касательное напряжение, МПа; У — относительный сдвиг (величина безразмерная), характеризуемый относительным искажением прямого угла. Для определения модуля упругости или сдвига при испытаниях одновременно измеряют напряжения и деформации (с высокой точностью).

    Технологические свойства древесины имеют большое значение при изготовлении из нее изделий. К ним относятся обрабатываемость резанием, сопротивление истиранию, способность к загибу, склеиванию и окрашиванию, а также способность удерживать гвозди и другие металлические крепления. Многие из них зависят от объемной массы, влажности и элементов анатомического строения древесины.

    Обрабатываемость резанием — пилением, строганием, долблением и сверлением — зависит от твердости древесины и определяется усилием на обработку и степенью чистоты поверхности. Твердая и плотная древесина обрабатывается легче и чище, чем мягкая. Чем выше влажность древесины, тем труднее ее обрабатывать; практически невозможно чисто обработать поверхность влажной древесины. На мягкой древесине (ива, тополь, осина, липа) часто остаются царапины и вмятины. Больше усилий затрачивается на обработку древесины с повышенной объемной массой.

    Сопротивление истиранию зависит от направления волокон, объемной массы, твердости и влажности древесины. Сопротивление истиранию с торца значительно больше, чем с боковой поверхности. С повышением объемной массы и твердости сопротивление истиранию возрастает, а при увеличении влажности — уменьшается. Истирание древесины происходит в результате постепенного разрушения поверхности под воздействием мелких твердых частиц и трения, при этом мелкие частицы удаляются неровностями трущихся деталей.

    Способность древесины к загибу учитывают при изготовлении гнутой мебели, колец, полуколец и других криволинейных деталей, а также бочек, ободов, дуг, т.е. в тех случаях, когда необходимо придать форму шаблона без разрушения волокон древесины и снижения механической прочности. Способность к загибу, как правило, выше у кольцесосуди-стых пород (дуба, ясеня и др.) и некоторых рассеяннососудистых пород с повышенной пластичностью, например бука. Уплотнение древесины происходит за счет крупных сосудов, без разрушения волокон. Способность древесины к загибу повышается по мере увеличения ее влажности до точки насыщения, а также температуры. При вбивании гвоздей в твердую древесину приходится затрачивать больше усилий. В этом случае в древесине высверливают отверстия диаметром на 0,2-0,3 мм меньше толщины гвоздя.

    Способность древесины удерживать гвозди, шурупы и другие крепления имеет большое значение как в строительстве, так и при сборке мебели. Гвоздь, вбитый в древесину, испытывает давление ее отдельных частей, которое и удерживает его за счет трения. Показателем способности древесины удерживать крепления является усилие, необходимое для выдергивания гвоздя (в Н на м2 поверхности соприкосновения гвоздя с древесиной). Это усилие зависит от породы, направления волокон, объемной массы и влажности древесины. Поперек волокон оно на 25% выше, чем вдоль. С увеличением объемной массы удельное усилие возрастает. При высыхании древесины способность удерживать крепление снижается вследствие уменьшения упругости волокон. Удерживающая способность древесины твердых пород в несколько раз выше, чем мягких. Удельное усилие для выдергивания шурупов при прочих равных условиях в 2 раза выше, чем для выдергивания гвоздей.

    Коэффициенты качества древесины. При»использовании древесины в различных отраслях промышленности, если решающее значение имеет не только прочность, но и масса деталей и узлов, изготовленных из разных материалов, комплексным показателем свойств материала, в том числе и древесины, является коэффициент качества.

    Коэффициент качества — это отношение показателя механических свойств к плотности материала. Если сравнить коэффициенты качества* различных материалов при растяжении, окажется, что древесина по этому показателю стоит выше многих металлов, соперничая с лучшими сортами стали: Сталь легированная                             0,95-2,3
    Стальное литье                                    0,45-0,55
    Железо                                               0,32-0,42
    Дюралюминий                                    1,1-1,7
    Алюминий                                          0,3-0,4
    Чугун                                                 0,3-0,51
    Древесина:
    ель, сосна                                        1,4-2,1
    липа                                                1,7-2,4береза                                              1,9-2,7

    Коэффициенты качества могут быть определены для любого показателя прочности. При сравнении показателей хвойных и лиственных пород древесины можно установить, что лиственные породы по многим механическим свойствам превосходят хвойные. Однако показатели качества при сжатии и статическом изгибе у хвойных пород выше, чем у лиственных.

    Допускаемые напряжения для древесины. Прочностные показатели, полученные при различных видах нагрузки, являются предельными и не могут служить исходными данными при расчете конструкций из древесины по разным причинам. Во-первых, для удовлетворительной работы деревянных конструкций необходим определенный запас прочности. Во-вторых, в реальных условиях прочность древесины может быть ниже, чем при испытаниях, из-за несовпадения направления волокон, наклона волокон, изменения влажности, пороков в древесине (сучков, гнили и др.), влияния колебаний температуры и т. д. Поэтому при расчете конструкции принимают так называемые допускаемые напряжения. Отношение величины предела прочности к величине допускаемого напряжения называется коэффициентом запасам.

    Вследствие анизотропности строения древесины и значительной изменчивости ее свойств во времени и под влиянием различных факторов коэффициенты запаса для нее устанавливаются более высокими, чем для металлов. Коэффициенты запаса для сжатия и скалывания составляют от 3 до 5, при растяжении вдоль волокон — до 8-10. Модуль упругости при приближенных расчетах принимают независимо от породы равным 10000 МПа, если изделие эксплуатируют в сухом помещении, 7000 МПа для элементов, долго находящихся в увлажненном состоянии.

    Для расчета элементов из сосны и ели, эксплуатируемы в сухом помещении при длительных нагрузках, принимают следующие допускаемые напряжения, МПа: изгиб и сжатие вдоль волокон — 10; растяжение вдоль волокон — 7; перерезание поперек волокон — 4,5; смятие поперек волокон — 3,5; скалывание вдоль волокон — 1-2; скалывание поперек волокон 0,5. Для древесины ясеня, дуба, клена допускаемые напряжения могут быть выше в 2 раза, кроме скалывающих напряжений, которые выше в 1,6 раза.

    Факторы, влияющие на механические свойства древесины

    В табл. сопоставлены объемная масса и показатели прочности древесины хвойных и лиственных пород.

    Древесина материал
    Средние показатели механических свойств древесины хвойных и лиственных пород (при 15%-ной влажности)
    Общая тенденция состоит в том, что чем плотнее древесина, тем большую прочность Она имеет. Плотность и прочность древесины возрастают, если лес растет на возвышенных местах и песчаных почвах.

    Повышение влажности до предела гигроскопичности (до 30%) понижает механические свойства древесины. Высушивание же древесины на 1% (в пределах изменения влажности от 20 до 8%) повышает ее сопротивление сжатию и изгибу на 4%, растяжению — на 1%.

    Пороки древесины понижают ее прочность.

    Пороками называют недостатки отдельных участков древесины, снижающие ее качество и ограничивающие возможности использования.

    Дефектами называют пороки механического происхождения, возникающие в древесине в процессе заготовки, транспортировки, сортировки, штабелевки и обработки.

    Ввиду наличия пороков прочность бруса или доски не может быть оценена по результатам испытания малых чистых образцов. Поэтому в отличие от других материалов сорта лесоматериалов устанавливают не по прочности образцов, а на основании оценки характера, размеров и количества пороков.

    Модель упруго-вязко-пластического тела для характеристики механических свойств древесины

    Исследование механических свойств древесины должно быть связано с выбором определенной идеализированной модели среды, основанным на глубоком анализе результатов предшествующих исследований. Чем шире и глубже анализ указанных результатов и их связи с данными исследования структуры древесины, тем точнее выбранная модель отражает механические свойства ее реальной среды.

    При удачном выборе модели получаем объект, поведение которого под нагрузкой хорошо описывается математическими уравнениями. Учет при составлении модели основных факторов и исключение второстепенных позволяет получить решения, близкие к действительности. Древесина материал

    Как свидетельствуют исследования, наиболее удачной моделью, достаточно полно отражающей поведение древесины под нагрузкой, является упруго-вязко-пластическое тело. Мгновенная упругая деформация древесины происходит за счет деформации целлюлозного скелета, скорость ее изменения равна скорости изменения нагрузки. Эластическая деформация, развивающаяся во времени, связана с вязким сопротивлением аморфного наполнителя перемещениям целлюлозного скелета.

    Аморфный наполнитель состоит в основном из лигнина и влаги. Остаточные или пластические деформации в древесине представляют собой необратимые деформации, связанные с местным разрушением скелета. Эти местные разрушения, объединяясь, создают зону пластической деформации, в которой в дальнейшем наблюдается общее разрушение.

    Пластические деформации так же, как и упруго-вязкие, развиваются во времени. Соотношение между всеми видами деформаций существенно зависит от влажности. Упругая и упруго-вязкая деформации намного превышают остаточную. Исключение составляет сжатие, особенно поперек волокон. Используя модель упруго-вязко-пластического тела, Белянкин и Яценко убедительно объясняют процесс деформации древесины во времени.

    В нашей статье указанная модель применяется для объяснения вариантов перераспределения напряжений в образцах различных размеров, возникающих вследствие больших градиентов напряжений в зонах резкого изменения жесткости структурных элементов древесины. При кратковременных испытаниях, которые в основном рассматриваются в настоящей работе, доля упругой деформации в общей деформации изделия довольно велика.

    Поэтому в дальнейшем особое внимание обращается на уточнение характера моделей упругой анизотропии древесины применительно к изделиям различных размеров.

    Переходим к рассмотрению эксплуатационных свойств древесины и предлагаем статью, в кото­рой рассматриваются ее свойства как конструкционного материала.

     Научный подход
    Мы уже не раз говорили о том, что древесина — материал естественного биологического происхож­дения (в отличие от металлов или искусственных синтетических полимеров), поэтому методы клас­сического материаловедения (металловедения) применимы к нему с достаточно большой мерой приближения. О причинах этого мы тоже писали неоднократно. Поэтому и существует особая нау­ка — древесиноведение, имеющая свои традиции и свои методы. Но в основном она основана на тради­ционных подходах к исследованию свойств матери­алов. Именно благодаря стремлению привести по­казатели механических свойств древесины к едино­му материаловедческому образцу и были разработа­ны методы их контроля для малых образцов чистой древесины. Тем не менее, данные, полученные, каза­лось бы, в искусственных условиях, необходимы хо­тя бы для объективной сравнительной характерис­тики различных пород. Но и здесь все не так просто. Объективную картину сравнительной оценки каче­ства древесины дают лишь удельные характеристики механических свойств, представляю­щих собой значения показателей, отне­сенные к значению плотности древеси­ны соответствующей породы.

    Удельные характеристики древесины имеют особое значение, когда от изделия или конструкции требуется высокая прочность и жесткость при малой массе. Удельные характеристики древесины по­казывают, что она вполне конкуренто­способна по сравнению с некоторыми другими материалами. Например, она имеет лучшие показатели, чем алюмини­евые сплавы, лишь немного уступает сте­клопластикам, а полимеры превосходит во много раз.
     Древесина материалРеальные условия
    Далее следует отметить, что в реаль­ных условиях сколько-нибудь значи­тельные изделия из древесины обяза­тельно содержат помимо неоднородностей строения и свойств, объясняе­мых различными условиями произра­стания и т. д., еще и пороки древесины. Исследования отечественных и зару­бежных ученых установили существен­ное снижение показателей прочности с увеличением размеров образцов. По­этому при проектировании деревян­ных конструкций используются расчетные сопротивления, показатели в несколько раз меньшие, чем пределы прочности, полученные для малых об­разцов. Эти показатели учитывают раз­меры элементов конструкций, наличие пороков древесины, изменчивость ее свойств, длительность действия нагру­зок и другие факторы. Основным доку­ментом, в котором приводятся данные для расчетов деревянных конструкций, являются строительные нормы и пра­вила СНиП П-25-80.
    В таблице 2 приведены значения рас­четных сопротивлений для древесины сосны и ели. В СНиП указаны

    Древесина материал

    требования к прочности конструкционной древеси­ны каждого сорта.

    Базисные показатели, представленные в таблице, умножают на ряд коэффици­ентов, учитывающих породу, состояние материала и условия его работы в конст­рукциях.
    Если нагрузка приложена к элементу конструкции, находящейся в условиях повышенной влажности, то расчетное сопротивление умножают на снижающие коэффициенты 0,75-0,9, а влияние повы­шенной температуры учитывают коэф­фициентами 0,8-1,0. В том случае, когда действуют кратковременные (ветровая, сейсмическая) нагрузки, расчетные со­противления увеличивают умножением на коэффициенты 1

    Древесина материал

    ,2-1,6. Совместное действие постоянных и временных дли­тельных нагрузок учитывают коэффици­ентом 0,8.
    Модули упругости вдоль и поперек во­локон древесины всех пород принима­ют равными соответственно 10 ГПа и
    400 МПа. Модуль сдвига в плоскости вдоль волокон — 500 МПа. Коэффици­енты поперечной деформации при дей­ствии усилий вдоль и поперек воло­кон — соответственно 0,5 и 0,2.
     
    РАСЧЕТНЫЕ СОПРОТИВЛЕНИЯ ДРЕВЕСИНЫ СОСНЫ И ЕЛИ

    Удельные характеристики механических свойств древесины

    Похожие товары

    Древесина – является органическим, пористым материалом растительного происхождения, которое может быть подвержено биологическ
    Лесоматериалы и пиломатериалы изготавливаются из двух типов древесины.
    Ареал произрастания ясеня простирается через всю Европу, особенно часто он встречается в северных предгорьях Альп, в Польше и на побережье Балтики.
    Если вы задумались о строительстве дома на даче, то скорее всего вы приобрели дачный участок, но без дома. Итак давайте задумаемся о том, что вам нужно для строительства.
    При гибке древесины нужно учитывать множество моментов: лучше всего для этого дела подходит свежая древесина, пропаривать древесину нужно определенное количество времени, которое зависит от ее толщ
    Береза имеет высокие физико-механические свойства. Древесина ее отличается высокой прочностью, особенно при ударных нагрузках.